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Inverse Problems are Ubiquitous in Systems and Control
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System Identification
Parameter Estimation

Data Assimilation
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An inverse problem can be made well-posed via a relevant inductive bias
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FORWARD PROBLEM
• UNIQUE SOLUTION

INVERSE PROBLEM
• NON-UNIQUE SOLUTION

Need to use appropriate inductive bias while inferring functional relationships from data!

Real-world systems often lack good quality data, but underlying physics is fairly known

ObservablesSystem 
Dynamics
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PIML: ML approaches with inductive bias defined explicitly by the laws of 
physics
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“PHYSICS-INFORMED ML” exploits “the laws of physics” 
(e.g., Mechanics, Thermodynamics) in its design!

ü Better generalization
ü Data-efficiency
ü Transparency / Grey-box models
ü Increase in learning speed

Value Proposition

AI/ML SYSTEMS

Architecture
of 

ML Pipeline
Learning 
Objective Dataset
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Hamiltonian dynamics with control offer a natural framework for modeling a 
large class of systems
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Port-Hamiltonian System: 

Skew-symmetric
Symmetric, Positive-semidefinite

Pendulum

Cart-pole

§Generalized Coordinate – 𝑞
§Generalized Momentum – 𝑝
§Hamiltonian – 𝐻 – which usually represents the total energy

§External Control – 𝑢

𝐻(𝑞, 𝑝) =
1
2
	𝑝"𝑀#$ 𝑞 𝑝 + 𝑉(𝑞)

Kinetic energy

Potential energy

Energy 
Storage

Resistive 
Elements

Power-conserving 
interconnection

Environment

port
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How do we encode Hamiltonian dynamics into neural network architecture?
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Available data: 𝑞, 𝑝, 𝑢	 !!,⋯,!"

Consider an ODE – 𝑥̇ = 𝑓$ 𝑥, 𝑢 , where 𝑓$ 𝑥  is parametrized by a neural network

Use Neural ODE Solvers [❡] to obtain:  *𝒙!# , *𝒙!$ , … , *𝒙!" = 𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒(𝒙!! , 𝒇$ , 𝑢, 𝑡%, … , 𝑡&)

Minimize an appropriate penalty function 𝑑 :,:  (e.g., MSE, MAE) to find a suitable 𝑓$ :

𝐿 =<
'()

&

𝑑(𝒙!% , *𝒙!%)

Symplectic 
ODENet

𝒇$ 𝒒, 𝒑, 𝒖 =

𝜕𝐻$#,$$
𝜕𝒑

−
𝜕𝐻$#,$$
𝜕𝒒

+
𝟎

𝒈$&(𝒒)
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𝐻$#,$$(𝒒, 𝒑) =
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*𝑴$#
+) 𝒒 𝒑 + 𝑉$$(𝒒)

§ 𝑀!!
"# 𝑞 = 𝐿!!𝐿!!

$ 	- Fully-connected Feedforward Network

§ 𝑉!"(𝑞)	- Fully-connected Feedforward Network
§ 𝑔!#(𝑞) - Fully-connected Feedforward Network

We use mean-squared error (MSE) as the penalty function!

[❡] Chen, Rubanova, Bettencourt, Duvenaud | Neural Ordinary Differential Equations | NeurIPS 2018.
* Zhong, BD, Chakraborty | Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control | ICLR 2020.
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Can Symplectic ODENet infer the dynamics of a pendulum from data?
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q Prediction of test trajectories (𝑢 = 0)

q Functions learned by SymODEN
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q Theoretical perspective: Convenient to deal with independent generalized coordinates and momenta, i.e., 
𝑞, 𝑝 .

q Data-driven perspective: Angle coordinate – 𝑞 – is often embedded in (cos 𝑞 , sin 𝑞) format, since treating 𝑞 
as a variable in ℝ) fail to respect the geometry that 𝑞 lies on the manifold 𝕊). Also, the velocity data – 𝑞̇ – is 
often more readily available than the momentum data 𝑝.  

Question: Can we bridge this gap?

Bridging this gap through an angle-aware Design

Define 𝑥), 𝑥,, 𝑥- = sin 𝑞 , cos 𝑞 , 𝑞̇

Use chain-rule and Hamiltonian dynamics to express the dynamics of 𝑥), 𝑥,, 𝑥- 	

𝒙̇) = −sin𝒒 ∘ 𝒒̇ = −𝒙, ∘ 𝒒̇
𝒙̇, = cos 𝒒 ∘ 𝒒̇ = 𝒙) ∘ 𝒒̇

𝒙̇- =
𝑑
𝑑𝑡

𝑴+)(𝒙), 𝒙,)𝒑 =
𝑑
𝑑𝑡
𝑴+) 𝒙), 𝒙, ⋅ 𝒑 +𝑴+) 𝒙), 𝒙, ⋅ 𝒑̇

𝒑 = 𝑴 𝒙$, 𝒙% ⋅ 𝒙&
𝒒̇ =

𝜕𝐻(𝒙$, 𝒙%, 𝒑)
𝜕𝒑

𝒑̇ = −
𝜕𝐻 𝒙$, 𝒙%, 𝒑

𝜕𝒒
+ 𝒈 𝒙$, 𝒙% 𝒖

𝒑̇ = 𝒙% ∘
𝜕𝐻
𝜕𝒙$

− 𝒙$ ∘
𝜕𝐻
𝜕𝒙%

+ 𝒈 𝒙$, 𝒙% 𝒖

where,
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Angle-aware Design leads to performance improvement
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Ø Learned functions

Ø Prediction

Gray: Ground Truth
Orange: Prediction

Baseline
No energy conservation

Model-variant
Unstructured Hamiltonian

Symplectic ODENet
Structured Hamiltonian
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Extending the scope to accommodate dissipation, embedded 
representation, and contacts/collisions
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An alternative approach: Encoding physics into the learning objective
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Raissi, Perdikaris, Karniadakis | PINN: A DL framework for solving forward and inverse problems involving nonlinear PDEs | J. Comp. Physics

Cai et al. | Flow over an espresso cup | J. Fluid Mech.
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Sparse Measurement

Backpropagation
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ü Physics-informed ML exploits the underlying laws of physics to define 
an appropriate Inductive Bias (e.g., ML architecture, Loss function) for 
the solving the inverse problem

ü This leads to improvement in model transparency, learning speed, 
data efficiency, and generalization performance

Key Take-away

biswa-dey@ieee.org

https://d-biswa.github.io/

@DBiswadip

Unrestricted | © Siemens 2023 | Biswadip Dey | ACC 2023 | 06-02-2023


