Physics-informed Machine Learning for Inverse Problems

Biswadip Dey

Siemens Corporation, Technology

American Control Conference – 2023 San Diego, CA, USA | June 2, 2023

Inverse Problems are Ubiquitous in Systems and Control

An inverse problem can be made well-posed via a relevant inductive bias

Need to use appropriate *inductive bias* while inferring functional relationships from data!

Real-world systems often lack good quality data, but underlying physics is fairly known

PIML: *ML* approaches with inductive bias defined explicitly by the laws of physics

"PHYSICS-INFORMED ML" exploits "the laws of physics" (e.g., Mechanics, Thermodynamics) in its design! Architecture Learning Dataset \mathbf{O}^{\dagger} Objective **ML** Pipeline AI/ML SYSTEMS

Value Proposition

Better generalization

✓ Data-efficiency

- ✓ Transparency / Grey-box models
- ✓ Increase in learning speed

Hamiltonian dynamics with control offer a natural framework for modeling a large class of systems

How do we encode Hamiltonian dynamics into neural network architecture?

Available data: $(q, p, u)_{t_0, \dots, t_n}$

Consider an ODE $-\dot{x} = f_{\theta}(x, u)$, where $f_{\theta}(x)$ is parametrized by a neural network

Use Neural ODE Solvers [I] to obtain: $\hat{x}_{t_1}, \hat{x}_{t_2}, ..., \hat{x}_{t_n} = ODESolve(x_{t_0}, f_{\theta}, u, t_0, ..., t_n)$

Minimize an appropriate penalty function $d(\cdot, \cdot)$ (e.g., MSE, MAE) to find a suitable $f_{\theta}(\cdot)$

$$L = \sum_{i=1}^{n} d(\boldsymbol{x}_{t_i}, \widehat{\boldsymbol{x}}_{t_i})$$

Symplectic
ODENet
$$f_{\theta}(q, p, u) = \begin{bmatrix} \frac{\partial H_{\theta_{1}, \theta_{2}}}{\partial p} \\ -\frac{\partial H_{\theta_{1}, \theta_{2}}}{\partial q} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ g_{\theta_{3}}(q) \end{bmatrix} u$$

$$H_{\theta_{1}, \theta_{2}}(q, p) = \frac{1}{2} p^{T} M_{\theta_{1}}^{-1}(q) p + V_{\theta_{2}}(q)$$

- $M_{\theta_1}^{-1}(q) = L_{\theta_1}L_{\theta_1}^T$ Fully-connected Feedforward Network
- $V_{\theta_2}(q)$ Fully-connected Feedforward Network
- $g_{\theta_3}(q)$ Fully-connected Feedforward Network

We use mean-squared error (MSE) as the penalty function!

Page 6 Unrestricted | © Siemens 2023 | Biswadip Dey | ACC 2023 | 06-02-2023 ^[5] Chen, Rubanova, Bettencourt, Duvenaud | Neural Ordinary Differential Equations | NeurIPS 2018. * Zhong, BD, Chakraborty | Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control | ICLR 2020

Can Symplectic ODENet infer the dynamics of a pendulum from data?

 \Box Prediction of test trajectories (u = 0)

Bridging this gap through an angle-aware Design

- □ Theoretical perspective: Convenient to deal with independent generalized coordinates and momenta, i.e., (q, p).
- □ Data-driven perspective: Angle coordinate -q is often embedded in $(\cos q, \sin q)$ format, since treating q as a variable in \mathbb{R}^1 fail to respect the geometry that q lies on the manifold \mathbb{S}^1 . Also, the velocity data $-\dot{q}$ is often more readily available than the momentum data p.

Question: Can we bridge this gap?

Define $(x_1, x_2, x_3) = (\sin q, \cos q, \dot{q})$

Use chain-rule and Hamiltonian dynamics to express the dynamics of (x_1, x_2, x_3)

$$\dot{\boldsymbol{x}}_1 = -\sin \boldsymbol{q} \circ \dot{\boldsymbol{q}} = -\boldsymbol{x}_2 \circ \dot{\boldsymbol{q}}$$

$$\dot{\boldsymbol{x}}_2 = \cos \boldsymbol{q} \circ \dot{\boldsymbol{q}} = \boldsymbol{x}_1 \circ \dot{\boldsymbol{q}}$$

$$\dot{\boldsymbol{x}}_3 = \frac{d}{dt} (\boldsymbol{M}^{-1}(\boldsymbol{x}_1, \boldsymbol{x}_2)\boldsymbol{p}) = \frac{d}{dt} \boldsymbol{M}^{-1}(\boldsymbol{x}_1, \boldsymbol{x}_2) \cdot \boldsymbol{p} + \boldsymbol{M}^{-1}(\boldsymbol{x}_1, \boldsymbol{x}_2) \cdot \dot{\boldsymbol{p}}$$

$$p = M(x_1, x_2) \cdot x_3$$

$$\dot{q} = \frac{\partial H(x_1, x_2, p)}{\partial p}$$
where,
$$\dot{p} = -\frac{\partial H(x_1, x_2, p)}{\partial q} + g(x_1, x_2)u$$

$$= x_2 \circ \frac{\partial H}{\partial x_1} - x_1 \circ \frac{\partial H}{\partial x_2} + g(x_1, x_2)u$$

Angle-aware Design leads to performance improvement

Learned functions

Prediction

Extending the scope to accommodate **dissipation**, **embedded** representation, and contacts/collisions

Simplifying Hamiltonian and Lagrangian Neural **Networks via Explicit Constraints**

DISSIPATIVE SYMODEN: ENCODING HAMILTONIAN DYNAMICS WITH DISSIPATION AND CONTROL INTO DEEP LEARNING

Dissipative SymODEN

2

Yaofeng Desmond Zhong[†]*, Biswadip Dey[‡], and Amit Chakraborty[‡] [†]Princeton University, [‡]Siemens Corporation, Corporate Technology y.zhong@princeton.edu, (biswadip.dey,amit.chakraborty)@siemens.com

р

 $^{-1}$

-2

-3 -2 -1

Extending Lagrangian and Hamiltonian Neural Networks with Differentiable Contact Models

Yaofeng Desmond Zhong^{\dagger}, Biswadip Dey^{\dagger}, Amit Chakraborty^{\dagger} [†]Siemens Technology, Princeton, NJ 08536, USA. {yaofeng.zhong, biswadip.dey, amit.chakraborty}@siemens.com

An alternative approach: Encoding physics into the learning objective

Raissi, Perdikaris, Karniadakis | PINN: A DL framework for solving forward and inverse problems involving nonlinear PDEs | J. Comp. Physics

Key Take-away

- Physics-informed ML exploits the underlying laws of physics to define an appropriate Inductive Bias (e.g., ML architecture, Loss function) for the solving the inverse problem
- This leads to improvement in model transparency, learning speed, data efficiency, and generalization performance

